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Abstract

This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges
with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts
to solve thick Lévy plate problems in a novel way by establishing bending relationships that allow the prediction of
Mindlin plate results using the corresponding Kirchhoff solutions. Based on the concept of load equivalence, these
relationships obviate the need for complicated thick plate analyses that involve significant computation time and effort.
Numerical plate solutions are then determined from these relationships and the validity of these results is verified using
other known results and those generated using the ABAQUS software. It is through this study that the only analytical
Mindlin plate solutions by Cooke and Levinson (Int. J. Mech. Sci. 25 (1983) 207) are found to contain errors. In this
study, it is found that there are important distinctions between the Mindlin and Reissner plate theories. These differ-
ences will also be substantiated by numerical comparison. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Bending; Thick plates; Lévy solutions; Mindlin plate theory; Reissner plate theory

1. Introduction

In the analysis of relatively thin plates, it is sufficient to use the Kirchhoff plate theory. This classical
plate theory can produce fairly accurate plate solutions until the thickness-to-length ratio reaches the limit
of 1/20 (Yuan and Miller, 1992; Reddy, 1999). Once over this limit, the errors become significant enough to
warrant the use of thick plate analysis. These errors arise because of the Kirchhoff plate assumption that the
normals to the middle surface are to remain straight and normal after the plate has undergone deformation.
This normality assumption is equivalent to the negligence of the effect of transverse shear deformation.

For moderately thick plates with thickness-to-length ratios over 1/20, it is necessary to adopt a plate
theory that accounts for the effect of the transverse shear deformation. Many shear deformable plate
theories, mostly of higher order, have been proposed over the years for the analysis of thick plates (Nelson
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and Lorch, 1974; Reissner, 1975; Lo et al., 1977; Levinson, 1980; Reddy, 1984). These higher-order plate
theories utilise displacement fields that truncate terms of different orders in the power series expansion
through the plate thickness. With higher-order terms in the displacement field, the bending behaviour of
thick plates can be predicted more accurately. However, it is noted that higher accuracy often comes with a
price of longer computation time and effort.

As an alternative, one can use a simple shear deformable plate theory that adopts a displacement field of
the same order as the classical thin plate theory, known as the Mindlin plate theory (Mindlin, 1951).
Commonly referred to as a first-order shear deformable plate theory, the Mindlin plate theory primarily
relaxes the Kirchhoff’s normality assumption by allowing the normals to undergo uniform rotation about
the middle surface after deformation. In allowing the normals to rotate uniformly, the Mindlin plate theory
essentially assumes constant shear strains (and stresses) across the plate thickness. This however violates the
statical requirement that shear stresses are to vanish at the free surfaces of the plate. To compensate for
such an error, Mindlin introduced a shear correction factor to modify the shear modulus.

Research on thick plate analysis based on the Mindlin plate theory has mostly been restricted to nu-
merical techniques for the generation of results. For Lévy plates, researchers employ numerical methods
like the finite element method (Huang and Hinton, 1984; Bergan and Wang, 1984; Hinton and Huang,
1986; Yuan and Miller, 1992; Dong et al., 1993; Dong and Teixeira de Freitas, 1994), the finite strip
method (Petrolito, 1990), the differential quadrature element method (Liu and Liew, 1998) or the seg-
mentation method (Kant and Hinton, 1980) to produce Mindlin plate solutions. In the open literature, the
only analytical Mindlin plate results on Lévy plates have been reported by Cooke and Levinson (1983).
This has been found to be erroneous in Wang et al. (1999) and will be established in the present study. The
other exact plate solutions are provided by Salerno and Goldberg (1960) for Lévy plates which is however
based on another shear deformable plate theory, the Reissner plate theory. In general, plate solutions
obtained by Kant and Hinton (1980) have been considered as the benchmark for comparison and vali-
dation. In recent years, Wang and his coworkers (Wang and Alwis, 1995; Wang and Lee, 1996; Wang,
1997; Wang et al., 1999; Wang and Lim, 1999) have initiated a new research direction on thick plate
analysis by interestingly linking up the Kirchhoff plate solutions with the Mindlin counterparts in a single
bending relationship. Via the concept of load equivalence, these novel relationships allow researchers and
engineers to make use of the widely available Kirchhoff plate solutions (Timoshenko and Woinowsky-
Krieger, 1959; Mansfield, 1989) to bypass complicated thick plate analyses. So far, bending relation-
ships using this method have been derived for circular and annular plates, sectorial plates and polygonal
plates.

Although similar Kirchhoff-Mindlin bending relationships for Lévy plates have already been published
in Wang et al. (1999), many Lévy plate results of different boundary and loading conditions have been
omitted due to the length limitation of a technical brief note. Furthermore, there is no further explanation
on the errors made by Cooke and Levinson (1983) in Wang et al. (1999), except with some numerical il-
lustration. Hence this study wish to furnish these unpublished plate results together with a more general
derivation for the Kirchhoff-Mindlin bending relationships. In addition, the errors by Cooke and Levinson
(1983) will be clarified in detail. To evaluate the correctness of the bending relationships, the numerical
plate results by the present work are validated with those obtained by other researchers mentioned earlier
and a well known commercial software, ABAQUs (1997).

Finally, the shear deformable plate theory proposed by Reissner (1944, 1945, 1947) will be contrasted
against the Mindlin plate theory. It is generally perceived by some researchers that when the Mindlin shear
force correction factor is set to 5/6, the Mindlin plate theory reduces to the Reissner plate theory. On the
contrary to this perception, it will be shown herein that these two plate theories are dissimilar in their
formulations and assumptions which can significantly change the results. The dissimilarities between the
two plate theories will be substantiated with the numerical results computed in the present work and those
from Salerno and Goldberg (1960) using the Reissner plate theory.
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2. Mindlin plate theory

Based on the Mindlin plate theory, the stress resultants of a plate in bending satisfy the following
equations of equilibrium (Timoshenko and Woinowsky-Krieger, 1959)

00 | 00,
P + 3 +q=0, (1a)
oM, oM, B
Ox + - - Qx - 0; (1b)
oM,, aM
=0. 1

From the constitutive equations, the Mindlin stress resultants in terms of the displacement and rotations
may be written as (Reismann, 1988)

MgD<aa‘f; aa‘f;) (2a)
mp=o(v e+ ), (20
M =300 - (43, (20)
oM xGh(qs +aal) ()
0 = 6h(9,+ 27, (2¢)

where ¢, and ¢, denote the rotations of the normals to the middle surface about the y- and x-axes, re-
spectively, and wM is the transverse deflection of the middle surface of the plate. The superscript M denotes
Mindlin plate quantities. Also, D, G and v are the plate bending rigidity, shear modulus and Poisson’s ratio,
respectively. In Egs. (2d) and (2e), x? is shear correction factor that has been introduced to modify the shear
modulus. This shear correction factor depends not only on the material and geometric parameters but also
on the loading and boundary conditions. Generally for rectangular plates of uniform thickness, x> can be
taken to be 5/6 and this value has been adopted throughout this study.

As the Mindlin plate theory includes the effect of transverse shear deformation, the Mindlin shear forces
can be obtained from the constitutive relationships, as shown in Egs. (2d) and (2e). One may also deter-
mine the Mindlin shear forces by substituting the bending and twisting moments in Egs. (2a)—(2¢) into the
equilibrium equations, Eqgs. (1b) and (1c¢), respectively. With that, the Mindlin equilibrium shear forces are

Qy_D{%(%ﬁ aaq5 >+%(1_v)%<aaﬁx_aa(?)]’ B

B 0 [ 0¢, 6¢>), 1 0 (0¢, 6¢>y
o' =05 (T ) 20 a0 (30)
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Introducing the Marcus moment or moment sum M = (M,, + M,,)/(1 + v), Egs. (3a) and (3b) become

oMM 1 o (0¢, 0P,
O: axHD“‘V)ay(ay a) (4)
w _OMY L0 (06, D¢,
0 ==, 700 V)6x<6y Gx})' (4b)

In view of Egs. (la), (4a) and (4b), the governing equation of a Mindlin plate under bending can be
written as

0p, 09, q
M 2 X p) __ 1
viMM = qéV(aer—ay) o (5)

where V2(-) = 0*(+)/ox* + ©*(-)/dy? is the Laplacian operator.
The Mindlin governing equation may also be obtained by considering the transverse shear forces in Egs.
(2d) and (2e), and the equilibrium equation in Eq. (1a). This gives

MM
K>Gh <V2WM + 7) = —q. (6)

It can also be noted that equating the shear forces in Egs. (2d) and (2e) to those in Egs. (4a) and (4b),
respectively, and eliminating the Marcus moment in the process, one can deduce the following equation:

0p, 0d\ _ ,(0p, 09,
V2<@y_6>C)_cz(@y_§>’ 7
where ¢? = 2k>Gh/[D(1 — v)].

Finally, the uncoupled equation for the transverse deflection can be obtained by combining Egs. (5) and
(6) to give

D
4. M _ 1— 2 .
DV*w ( KZGhv )q (8)
At the same time, in view of Egs. (5) and (7), the expressions for the normal rotations may be written as
1 0q 0 (3¢, 09,
4 — _ - -1 2 > x p) 9
Vs D@x+cay<6y ox )’ (%)
1 oq o (3¢, 09,
4, 199  »0 x_ Py
Vg, = D dy ¢ 6x< oy ox ) (90)

Eq. (8) is the well-known uncoupled equation for the Mindlin deflection, and is the same as that derived by
Cooke and Levinson (1983). However, the uncoupled equations for the normal rotations by Cooke and
Levinson (1983) do not contain the last term on the right hand side of Egs. (9a) and (9b). In the open
literature, the ignorance of the last term was sometimes taken as a common approximation. Rigorously,
this last term can only be omitted for the special case of a polygonal plate with all edges simply supported.
This is because the missing terms in Cooke and Levinson vanish for such plates, as will be substantiated
later in this paper. As reported by Reddy et al. (2001) for Lévy plates, to ignore the last term will have an
undesirable stiffening effect on the plate bending behaviour. It should also be emphasised that Egs. (5)-(9b)
are not alternative governing equations to the three given in Egs. (1a)—(1c) and are presented above for
subsequent development of the bending relationships.
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3. Kirchhoff plate theory

For Kirchhoff plates, the equilibrium equations are similar to Egs. (1a)—(1¢c), and the Kirchhoff stress
resultants in terms of the displacement are (Reismann, 1988)

o*wk o*wk
MX]§:—D(W+V6—J}2>7 (IOa)
o*wk  twk
My, = —D(VWJFa—yz)’ (10b)
2 K
M)f;:—D(l—v)a v (10c)
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where the superscript K denotes Kirchhoff plate quantities. Since the classical thin plate theory neglects the
presence of transverse shear strain, the transverse shear forces can only be determined from the equilibrium
equations. In view of Egs. (1b), (1¢) and (10a)-(10c), these shear forces can be expressed in term of the
Marcus moment as

0 oMK

K _ = (v2,,K) —

O; =Dy (Viw) =——, (11a)
d oMK

K _ 2 Ky

oy = D@y( ) " (11b)

From Egs. (1a), (11a) and (11b), the well-known fourth-order governing equation of the Kirchhoff plate
theory can be established as

VK = % = VMK = . (12)

4. General Kirchhoff-Mindlin bending relationships

It is observed that regardless of the plate theories, the transverse load acting on the plate is the same.
With this concept of load equivalence, Egs. (5) and (12) lead to the Kirchhoff-Mindlin Marcus moment
relationship:

VMM = V2MK = MM = M¥ 4 DV? 0, (13)

where ®(x,y) is a bi-harmonic function that satisfies V4@ = 0.
In view of Egs. (6), (12) and (13) and solving the final expression, one can obtain the Kirchhoff-Mindlin
deflection relationship as
K
K>Gh
where ¥(x,y) is a harmonic function that satisfies the Laplace equation V2¥ = 0. In order to link the
Mindlin normal rotations to the Kirchhoff slopes, the differential equation, given in Eq. (7) is first solved

and its solution can be generally expressed as Q(x, y). Then by substituting Egs. (2d), (13) and (14) into Eq.
(4a), it can be found that

WM:WK+

¥, (14)
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awk o[ D ) 1 10Q
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and similarly from Egs. (2¢), (4b), (13) and (14),
awk o[ D ) 1 10
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It is to note that one can also express the Mindlin rotations as a vector field via the Helmholtz represen-
tation as presented in Appendix A. While such a representation yields simpler expressions, one need to
solve thick plate governing equations to determine the associated potentials.

Now, to furnish the Kirchhoff-Mindlin stress-resultant relationships, one can simply substitute Egs.
(14)—(15b) into Egs. (2a)—(2e) and obtain

o[0 100
M __ K _ 2 _ 2
Mg =M —D(1 —v)— % {@y (KZGhV D+ P w) 3 ax] +DV*9, (16a)
of0o 1 0Q
M _ 3K _ 2 _ 2
M) =M —D(1 V)Gx {a <K2Ghv D+ @ — qf) + ay} +DV?®, (16b)
MM = MK +D(1 —v) ¢ D VOo+d—-V)+ L 1e Q (16¢)
v oxdy \ k2Gh 2 2wm) )
6 D(1 —v) 0Q
0 D(1 —v) 0Q
M __ 2
o) =0F + > (DV?®) ———— o (16e)

With that, the exact Kirchhoff-Mindlin bending relationships have been derived. They contain intrinsic
plate functions @, ¥ and Q that may be established uniquely for any plate shape of general boundary and
loading conditions. In the next section, these exact Kirchhoff-Mindlin bending relationships will be
specialised for rectangular Lévy plates.

5. Lévy plate formulation

Consider an isotropic and homogeneous rectangular Lévy plate with uniform thickness 4, length a,
width b, modulus of elasticity E, Poisson’s ratio v, and shear modulus G = E/[2(1 + v)]. Adopting the
rectangular Cartesian coordinate system as shown in Fig. 1 with its origin at the mid-left edge of the plate,
the edges x = 0 and x = a are simply supported while the other two edges along y = +b/2 can be of any
combination of simply supported, clamped or free conditions. The form of the transverse loading on the
Lévy plate may be characterised by

qu ) sin"-. (17)

The boundary conditions along the edges x = 0 and x = a and the transverse loading in Eq. (17) can be
satisfied by the displacement functions of the form:
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Fig. 1. Lévy plate and the rectangular coordinate system.
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whereas the Kirchhoff displacement function can be taken as
= _ . MTX
W () = D) sin " (19)
m=1
In view of Egs. (17)—(19), the intrinsic plate functions for Lévy plates are
P(x,y) = ,,; ZL:n—yn (Clm coshany + G sinh?) sin?, (20a)
Y(x,y) = Z (Cg,,, cosh ™ + Cup sinh@) s.in@7 (20b)
g a a a
Qx,y) = Z (Csp sinh 4,y + Ce, cosh 4,) cos , (20c)
a
m=1
where 12 = (mn/a)’ +c¢* and C,, (i=1,...,6) are constants of integration that can be determined by

applying the boundary conditions along the edges y = £b/2. Similar bending relationships can also be
found in Wang et al. (1999). Based on the Mindlin plate theory, there are three boundary conditions that
are to be satisfied along each of the two edges. These six independent boundary conditions are sufficient for
determining all the six unknown constants. Below, these constants have been evaluated for Lévy plates with
simply supported edges along y = +b/2 . One can refer to Appendix B for the constants of Lévy plates with

other combinations of edge conditions along y = +b/2.
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5.1. SSSS Lévy plates

When the other two plate edges of the Lévy plate are also simply supported, the plate reduces to a Navier
plate with the following boundary conditions at the edges y = +b/2:

wM=wk =0, M) =M;=0, ¢, =0. (21a—<)
In view of Egs. (14), (15a), (16b) and (20a)—(20c), it can be shown that
Clm - C2m - C3m - C4m - CSm - C6m - 0 (22)
Therefore, for simply supported Lévy plates (or Navier plates), the bending relationships are given by
MK
M _ K
wh=w +K2Gh’ (23a)
owk owk
= - — _ 2
¢x ax ’ ¢y ay I ( 3b7c)
M __ K M __ K
My =Mz, — Mg=Mg, (23d,e)
M _ 3K M _ K M _ K
ny - Mxy’ Qx - Q,x ’ Qy - Qy . (23f7h)

It can be shown that the above deflection relationship, Eq. (23a) is also valid for even other than Lévy-type
loading conditions (Wang and Alwis, 1995).
Due to Eq. (22) where Cs,, = Cg,, = 0, it can be deduced that the intrinsic plate function @ in Eq. (20c)
also becomes zero, and hence Eq. (7) can be reduced to
op, _ 99,

5 "o (24)

This therefore validates the reasoning discussed earlier concerning Eqs. (9a) and (9b) that the uncoupled
equations for the normal rotations by Cooke and Levinson (1983) are valid for Navier plates only.

6. Mindlin and Reissner plate theories

To stipulate the kinematic behaviour through the plate thickness that includes the effect of the transverse
shear deformation, both Mindlin (1951) and Reissner (1944, 1945, 1947) had independently proposed a
shear deformable plate theory for analysing moderately thick plates. Many researchers still have the per-
ception that both theories are essentially similar especially when the Mindlin shear correction factor is
taken to be 5/6 and often associate them together as the Reissner—Mindlin plate theory. To an extent, some
researchers may have adopted one of these plate theories in their plate analyses and yet compare their
numerical solutions against those furnished using the other plate theory.

As such, it is useful to establish the dissimilarity between both plate theories in terms of the Kirchhoff
quantities. A major distinction between both theories is that the Reissner plate theory is derived from the
variational principle of complementary strain energy with the assumption of linear bending stress distri-
bution and parabolic transverse shear stress distribution through the thickness. On the other hand, Mindlin
formulated his theory by first assuming a linear variation of displacement across the plate thickness while
maintaining the transverse inextensibility of the plate thickness. The formulation of the Reissner plate
theory leads to the displacement variation not necessarily being linear across the plate thickness and also
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the plate thickness being deformed. It is only through the matching of the actual work done by the stresses
to that by equivalent moments or forces that Reissner obtained the weighted average or equivalent values
of displacements across the plate thickness. On reviewing the formulation of both plate theories, it is again
evident that the normal stress ¢., has been ignored in the Mindlin plate theory as opposed to its existence in
the Reissner plate theory.

As these differences between both plate theories have been corroborated earlier (Panc, 1975), the pur-
pose of this section is to treat this problem in a unique way, that is, by first seeking the bending rela-
tionships between the Mindlin and Reissner plate quantities and then between Kirchhoff and Reissner
plate quantities. Any difference between the plate theories can be seen easily from the bending relation-
ships.

Now, the Reissner stress resultants are given as follows (Reissner, 1947):

Miz—D(a;;‘;R—kva;;R)+D(1C:v)%+D<lgnv—c%)q, (25a)
MEZ_D<VG;Z;R+6;VZR>+D(1C?V)%+D<lgnv_%>q’ (25b)
MgD(lV)Z?;Z+D(;—C_SV)<aaQy§+%>’ (25¢)
[1 —D(%C:V)VZ] oR = —D%(VZWR) —D(1 + V)<2i} —%) %, (25d)
[1 —D(;icsv)vz]ggZ—D%(VZWR)—D(I—FV)(ZLC,S—CL”)%, (25¢)

where the superscript R denotes the Reissner plate quantities. For homogeneous plates, C, and C, can be
found to be 5Gi/6 and SEh/6v, respectively (Reissner, 1947). Since the equilibrium equations (1a)—(1c) also
apply to the Reissner plate theory, Egs. (1a), (25d) and (25¢) can be combined to provide the fourth-order
governing equation for the Reissner plate deflection

I 14w
DVWR =g —-D( = — Vig. 26
wh=gq <Cs c ) q (26)
From Egs. (25a) and (25b), the Marcus moment in the Reissner plate theory is given by
1 2
MR = —DV*wWR — D — - = )q. 27
Vo ¢ G )? (27)

Subsequently, by substituting Eq. (27) into Eq. (26), the Reissner governing equation in terms of the
Marcus moment can be expressed as follows:

D(1 —

V2 [MR - (V)q] = —q. (28)
Cy

Using Egs. (5) and (28) and based on the concept of load equivalence, the Marcus moment relationship

between the Mindlin and Reissner plate theories is given by

D(1 —v)

MR = MM
Mo

q+ DV’0, (29)
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where O(x,y) has the bi-harmonic property that satisfies V4@ = 0. Then, with the substitution of Eq. (29)
into Eq. (27), and together with Egs. (5) and (6), the Mindlin—Reissner deflection relationship can be
furnished as

MM — @ + 4, (30)

where V24 = 0. By considering the special case of a Navier plate where the Marcus moment vanishes along
the straight simply supported plate edges, the intrinsic plate functions @ and A will disappear. Thus, for a
homogeneous Navier plate, by taking note of the definition of C; in the Reissner plate theory and by setting
k* = 5/6 in the Mindlin plate theory, the Mindlin—Reissner deflection relationship reduces

1
wh =M — Rl

MM, (31)

n

By considering Egs. (23a), (23d,e) and (31), one can also deduce the Kirchhoff-Reissner deflection rela-
tionship as

(32)

2 MK
wh =wk + {1—(1+V)KGh]

C, | k2Gh’

Hence from Egs. (23a), (31) and (32) and by taking note of the definition of C,, it can be seen evidently that
there is considerable difference in the prediction of deflection by both shear deformable plate theories as
long as the strain energy due to ¢, and o, is not ignored.

For Lévy plates with other boundary conditions along y = +b/2, it is comprehensible that the intrinsic
plate functions @ and A do not vanish. To elucidate the distinction in the plate solutions furnished by both
plate theories, numerical results on the transverse deflection by Salerno and Goldberg (1960) have been
tabulated in Table 1 against the present solutions from the Kirchhoff-Mindlin deflection relationship in
Egs. (14), (20a)—(20¢) and (B.5a)—(B.5f), and those generated by ABAQUSs (1997) using Mindlin shell (S8R)
elements with x> = 5/6. Table 1 presents the non-dimensionalised deflection [w = wD/(g,a*)] for square
SFSF Lévy plates for different values of //a, under uniformly distributed load, ¢,, with v taken as 0.3.

From Table 1, it can be seen clearly that the plate deflections predicted by Salerno and Goldberg (1960)
using the Reissner plate theory are consistently lower than the present Mindlin plate results. The results
presented in Table 1 and all the above-mentioned justifications show clearly the differences between the two
plate theories. Hence, it is important to differentiate both shear deformable plate theories appropriately
when applied to thick plate analysis.

Table 1
Non-dimensionalised deflection of SFSF Lévy plates
hla At the centre of the plate, w (a/2,0) At the mid-span of the free edge, w (a/2,a/2)
Salerno and ABAQUS (1997)* Present Salerno and ABAQUS Present
Goldberg results Goldberg (1997)* results
(1960) (1960)
0.10 0.01341 0.01346 0.01346 0.01557 0.01560 0.01560
0.15 0.01379 0.01391 0.01391 0.01609 0.01616 0.01616
0.20 0.01433 0.01454 0.01454 0.01678 0.01690 0.01690
0.25 0.01502 0.01535 0.01536 0.01762 0.01781 0.01781
0.30 0.01586 0.01633 0.01633 0.01864 0.01889 0.01889

4 Using 40 x 40 S8R shell elements based on the Mindlin plate theory.
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7. Numerical examples and verification

With the establishment of the Kirchhoff-Mindlin bending relationships in Eqgs. (14)—(17) and with the
constants of integration uniquely defined for Lévy plates of various boundary conditions in Egs. (22)-(24)
and (B.1a—c)—(B.10f), numerical solutions can be generated. Herein, Mindlin plate results will be furnished
for square Lévy plates with symmetrical boundary conditions, i.e., SSSS, SCSC and SFSF types. Wherever
possible, results from past research are used for comparison (Kant and Hinton, 1980; Kant, 1982; Yuan
and Miller, 1992; Dong et al., 1993; Dong and Teixeira de Freitas, 1994). Plate solutions computed with
ABAQUS (1997) using Mindlin shell (S8R) elements are also used for validation. For uniformly loaded
plates, harmonic number m is chosen to ensure convergence and a valid comparison. Also, v is taken to be
0.3 while the shear correction factor x? is 5/6.

The non-dimensionalised central deflection [w = wD/(g.a*)] of uniformly loaded square Lévy plates with
symmetrical boundary conditions (%#/a = 0.2) have been tabulated and presented in Table 2. From Table 2,
it is observed that the present results show very good agreement with the results furnished by other re-
searchers, except those from Kant (1982). This is because Kant (1982) used a higher-order plate theory that
allows for a quadratic variation of transverse shear strain and a linear distribution of the transverse normal
strain.

In the comparison of the non-dimensionalised deflections with respect to different plate thicknesses, plate
solutions of SFSF Lévy plates, obtained by Dong et al. (1993) and Dong and Teixeira de Freitas (1994) are
presented against the present results in Table 3. Again, a good trend of agreement can be observed with
results from Dong et al. (1993) being comparatively closer to the present solutions.

Another way of checking the correctness of the present Kirchhoff~-Mindlin bending relationships is to
compare the stress resultants. Thus, numerical plate solutions for the stress resultants are furnished using
the above relationships together with those determined by Kant and Hinton (1980) for different plate
thicknesses. Tables 4-6 show the tabulated results for the Mindlin stress resultants of SSSS-, SCSC- and

Table 2
Non-dimensionalised central deflection of square symmetrical Lévy plates (4/a = 0.2, m = 40)
SSSS SCSC SFSF

Kant (1982) 0.004800 0.002930 0.014304
Kant and Hinton (1980) 0.004900 0.003016 0.014496
Yuan and Miller (1992) 0.004905 0.003021 0.014542
ABAQUS (1997)* 0.004905 0.003021 0.014539
Present results 0.004904 0.003021 0.014539

#Using 40 x 40 S8R shell elements based on the Mindlin plate theory.

Table 3
Non-dimensionalised deflection of square SFSF Lévy plates with different thicknesses (m = 40)
h/a At centre of plate At mid-span of free edge
Dong et al. Dong and Present results Dong et al. Dong and Present results
(1993) Teixeira de Freitas (1993) Teixeira de Freitas
(1994) (1994)
0.10 0.01346 0.01340 0.01346 0.01562 0.01549 0.01560
0.15 0.01391 0.01385 0.01391 0.01617 0.01607 0.01616
0.20 0.01454 0.01448 0.01454 0.01690 0.01679 0.01690
0.25 0.01535 0.01528 0.01535 0.01781 0.01771 0.01781

0.30 0.01633 0.01627 0.01633 0.01890 0.01879 0.01889
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Table 4
Non-dimensionalised stress resultants of square SSSS Lévy plates with different thicknesses
Point (x/a,y/a) Stress resultants Kirchhoff plate solution #/a =0.01-0.2
Kant and Hinton (1980) Present results
(0.5, 0) M. /(q.a°) 0.0479 0.0479 0.0479
0.5, 0) M,,/(qoa®) 0.0479 0.0478 0.0479
(1.0, 0.5) M,/ (q0a*) 0.0325 0.0324 0.0325
(1.0, 0) 0./(g0a) 0.333 0.332 0.333
(0.5, 0.5) 0,/(q0a) 0.338 0.337 0.338
Table 5
Non-dimensionalised stress resultants of square SCSC Lévy plates with different thicknesses
Point Stress resul-  Kirchhoff hja=0.02 hj/a=0.1 hja=0.2
(x/a,y/a) tants Plate solu- Kant and Present Kant and Present Kant and Hin- Present
tion Hinton (1980)  results Hinton (1980)  results ton (1980) results
0.5, 0) My /(qoa®)  0.0244 0.0244 0.0244 0.0258 0.0258 0.0292 0.0292
0.5, 0) M, /(g0,a*)  0.0332 0.0332 0.0332 0.0332 0.0333 0.0330 0.0331
(0.5, 0.5) M, /(g.a%)  0.0698 0.0697 0.0698 0.0679 0.0680 0.0626 0.0627
(1.0, 0) 0./(g0a) 0.239 0.239 0.240 0.243 0.243 0.251 0.251
(0.5, 0.5) 0,/(g0a) 0.516 0.513 0.513 0.500 0.500 0.475 0.475
Table 6
Non-dimensionalised stress resultants of square SFSF Lévy plates with different thicknesses
Point Stress resul-  Kirchhoff h/a=0.02 hj/a=0.1 hja=0.2
(x/a,y/a) tants plate solu- Kant and Present Kant and Present Kant and Present
tion Hinton (1980)  results Hinton (1980)  results Hinton (1980)  results
(0.5, 0) M./(goa®)  0.123 0.122 0.123 0.122 0.122 0.123 0.123
0.5, 0) M, /(q.a®)  0.0271 0.0268 0.0268 0.0256 0.0256 0.0237 0.0237
(1.0, 0) 0./(g0a) 0.464 0.463 0.463 0.460 0.460 0.456 0.457

SFSF-Lévy plates of different plate thicknesses, respectively. The number of harmonics used for generating
the present results using the bending relationships is 40.

8. Concluding remarks

Presented herein are the exact Kirchhoff-Mindlin bending relationships developed with the concept of
load equivalence. These bending relationships contain general intrinsic plate functions that can be applied
to any plate shape of arbitrary boundary and loading conditions. Once specialised, these bending rela-
tionships can be used to furnish exact Mindlin plate results upon supplying the widely available corre-
sponding Kirchhoff plate solutions. In this study, these Kirchhoff-Mindlin bending relationships have been
specialised for Lévy plates with different boundary conditions. The numerical plate results generated using
these relationships show very good correspondence with other solutions from past research. From the
derivation, it was discovered that the analytical Mindlin results for Lévy plates by Cooke and Levinson
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(1983) are erroneous. Their errors have been established in this study and are traced to missing terms in the
uncoupled governing equations for the normal rotations.

Also highlighted in this study are the differences between the Reissner and Mindlin plate theories in
terms of the corresponding Kirchhoff quantities. The most important difference is that the Reissner plate
theory allows for transverse extensibility while the Mindlin plate theory does not. This difference can be
quantified explicitly for Navier plates.

Appendix A

One can always express ¢, and ¢, as a vector field ¢ = [¢, ¢, 0]". Since ¢ must be continuously
differentiable, it can be represented as the sum of an irrotational vector field which is the gradient of a scalar
potential 4 and a solenodial vector field which is the curl of the vector potential B=[B;, B, B3]T
(Malvern, 1969)

$=VA+VxB, (A1)

where % is the del differential operator. The scalar potential 4 and vector potential B must satisfy the
following conditions:

V x (VA4) = 0, (A.2a)
V- (VxB)=0, (A.2b)
V-B=0. (A.2c)

The way of expressing ¢ as shown in Eq. (A.1) is commonly known as the Helmholtz representation. Note
that Eq. (A.2c) is an additional requirement imposed on B to facilitate subsequent simplification; such an
imposition limits the choice of B. For the problem concerned, one can further assume that the potentials 4
and B to be independent of z and this leads to the k-component of the column vector (V x B) in Eq. (A.1)
to be zero.

Taking the curl of Eq. (A.1) and from Eqgs. (A.2a) and (A.2c), one obtains

a(sz a¢y _ 72

oy ox Y (A3)
while the divergence of Eq. (A.1) gives the following:

a(px ad),\/ _ 2

e +§_VA‘ (A4)

Herein to simplify subsequent algebraic manipulation, one may want to put the potential 4 in terms of the
Kirchhoff transverse deflection wX as

A=—wK+4. (A.5)
Substituting Eq. (A.6) into Eq. (5) reveals the bi-harmonic nature of 4
V44 = 0. (A.6)
Now from Egs. (A.1) and (A.5), the Mindlin rotations can be re-written as
owK 04 0B
b, (x,y) = . (A.7a)

—Eﬁ‘a‘i‘a_y,
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owk N 04 0B
oy 0y Ox
To determine 4 and Bs, one can compare Egs. (A.7a) and (A.7b) to the rotation—slope relationships given in
Egs. (15a) and (15b) and obtain
~ D
A =
K2Gh

dy(x,y) = — (A.7b)

(V?O)+ 0 — ¥, (A.8a)

n-(Le a )

It is clear that the expression for 4 given in Eq. (A.8a) satisfies the condition as stated in Eq. (A.6). While
the value of B; and B, play no role in the above derivation, they can be taken to be zero to ensure the
adherence of Eq. (A.2c), without any loss of generality. With 4 and B; now being established, one can
proceed to derive the bending relationships as presented in Egs. (13)-(16e).

Appendix B

The constants of integration for plates with edges of various boundary conditions are given as below.
Note that these constants are valid for the types of loadings whose shape is to be the same for all sections
that are parallel to the two simply supported edges.

B.1. SCSC Lévy plates

For the clamped edges at y = +b/2, the boundary conditions are

K
wM = WK =0, ¢y=aaly=o, ¢, = 0. (B.lac)

The substitution of the boundary conditions Egs. (B.1a—) into Egs. (14)—(15b) and (20a)—(20c) gives

i ( cothZ sinh 22 — o cosh)""—b)

Clm = = 77 s (B2a)
{;’;’L b cosh 22k — K_DGh +1(2) | cosh sinh 2zl 4 40 ¢gch 2 sinh 2ub }
I ( tanhZ2 cosh "; — smh )
Com = : E . (B2b)
{:;ﬂ £ coshZ sinh %z — _Kchh +1(:4) | smhm—“” coshZz? — a0 gech 22 cosh 2P }
ab m7b mmb
C3m = m tanhWsz — ,u; Sechﬂ7 (BzC)
ab mnb mmnb
= h—— h— B.2
Cy i cot o Cim — 1, csSC 0 (B.2d)
2 mn Amb mnb K>Gh
Cop = — 7Y sech 22 | cosh ™72 ¢y, 4+ 57 it | B.2
: 1—v<azm)sec 2 {COS 2a D ”m} (B-2¢)

2 b [ . b 2Gh
Com = — <m7‘c >csch/L {smhmz7r Cim +—KD ,u;,], (B.2f)
a
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where

ME(5/2) + MX(=b/2) ME(5/2) — MX(=b/2)
+ m m - _ m m
o = 2k2Gh b e = 2k2Gh ' (B.3a,b)

B.2. SESF Lévy plates

Consider the Lévy plate where the edges at y = +£5b/2 are free. The boundary conditions of these edges
are

M)I;\y/[ = A/[}Irf = Oa Qy = V_VK = 07 M)g/;[ = Oa (B.4a—c)

where V= OF + M /0x is the Kirchhoff effective shear force.
In view of Egs. (16b), (16c), (16e), (20a)—(20c) and (B.4a—c), the constants are found to be

nt tanh'”z—’;b + é;{im tanh 2 — ¢ [/L + (22) } tanh@}

Clm = r P (Bsa)
([ ()7 sinb g (57) sy cosh g tanb 5 2 scch g |
. n,, coth 2 f,;{Am coth%z? — ¢ |:)Lz + (2z) } coth@} (B.5b)
2m = r B ) .
([ + ()7 coshigt — 4, (2) i sinh 22 coth s — 22t esch 2}
.. ( a . mm 2 a \? mnb a mnb
= — — — — —_— — th—
Cam {’7,,, f'"(2m7r){/bm+( a ) }}(mn) csch 2a +<mn)[4
a 1+v
- (%)2(1 — )]CZ'”
a \? mmnb Amb 1 a \? D ab mmnb
= ) _ _— L _ —t h_
Snom mmn sech 2a ¢ th 2 {1 - (mn) 26k T dmn
al D mmnb Amb
— i h—— coth™== B.5
< KZGht n 2(1 2 :|C2m; ( C)
. 2 mm\2 a \2 nh a b mnb
jddad il h™" Y 2 tanh 222
Can {rl"’ ¢ (Zmn) {A’" ( a ) }}(mn) e +< n) [4t 2
I+v
Cm
(mn) 2(1 )] !
L. [ a mmnb Amb 1 a \2 D ab mnb
_ il h—"" tanh 2"~ il -~ ddand
S ( mn e tanh= +[1—v(m7r> 2Gh " amn 0" 2
mnb Amb
coth—— tanh ~2— B.5d
( >K2Gh 2a 2 }Clm’ ( )
2 Amb mnb a [ K*Gh
= - - h 2 — - B.
Csm T Vcsch 7 {s n CZm - ( D >§m], (B.5e)
2 Imb mmnb a [ K*Gh
m — hL h m - - 5 BSf
Cs [, sech = {c C1 o ( ) > m] (B.5f)
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where
M, (b/2) + M. (—b/2) o M (B/2) = M, (—b/2)
= 2D(1 — v) = 2D(1 — v) ’ (B-6a.b)
0,,,(b/2) + 0,(=b/2) _0,,(6/2) - 0,,(=b/2)
& = G ;&= TEre : (B.6c,d)

B.3. SSSC Lévy plates

Next, consider the Lévy plate where the edges at x = 0, x = ¢ and y = —b/2 are simply supported while
the edge at y = b/2 is clamped. The boundary conditions are

M __ K __ M _ K __ _ : —
My =M; =0, wh =wt =0, ¢, = 0 for simply supported edge y = —b/2 (B.7a—c)
and
M K owk
wh =w" =0, ¢, = o = 0, ¢, = 0 for clamped edge y = b/2. (B.7d-f)
Y
In view of Eqgs. (14)-(15b), (16b), (20a)—(20c), (B.7a—) and (B.7d-f), one obtains
Clm =

25 (0 tanh 22 4 g coth 242 ) — (uf tanh %% + i coth %2 )

ab_ o1 mnb D 1(mn)?2 mnb mnb ab 2 mnb mnb 1 3 mnb 2 mnb 2mn _D H mnb 1 ’
{— sinh 222 4 [m +1(2z) ] cosh 2t sech 2z — b [ cosh? 42 csch 4 4 sinh’ 2tk sech® 2zt ] — 2un sinh 22 coth Amb}

2mn 4mn aly K2Gh

(B.8a)

Con = Cyy tanh ™2 (B.8b)
2m — “lm 2a ) .

Cs,, = right hand side of Eq. (B.2¢), (B.&¢c)
Cy,, = right hand side of Eq. (B.2d), (B.8d)
Cs,, = right hand side of Eq. (B.2e), (B.8¢)
Cen = right hand side of Eq. (B.2f), (B.8f)

where u! and u,, have the same meanings as in Eq. (B.3a,b)
B.4. SSSF Lévy plates

Finally, consider the Lévy plate with the edges at x = 0, x = a and y = —b/2 simply supported and with
the edge at y = b/2 free. The boundary conditions are given by

MY =M; =0, wM=uk =0, ¢, = 0 for simply supported edge y = —b/2 (B.9a—)

W
and
M __ K __ M _ /K __ M __ —
My =M =0, oy =V=0, M, = 0 for free edge y = b/2. (B.9d-f)

In view of Egs. (14), (15a), (16b), (16¢), (16¢e), (20a)—(20c), (B.9a—c) and (B.9d-f), the constants are found
to be
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Cim =0, (B.10a)
Com =0, (B.10b)
a \2On(b/2)  mnmb
= I — ) =2 ~sech—— tanh A B.1
Com " ( mn) 22Gh M g tanh 2,,b, (B.10c)
mnb
C4m = Cgm COch—7 (BlOd)
a
2 s aNOn(b/2) J.b
Cspy = — - (%) —p sthsech/lmb, (B.10e)
Cen = Csn coth A;b . (B.10f)
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